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Network-based prediction of drug combinations
Feixiong Cheng1,2,3,4,5, Istvań A. Kovaćs1,2 & Albert-Laśzló Barabaśi1,2,6,7

Drug combinations, offering increased therapeutic efficacy and reduced toxicity, play an

important role in treating multiple complex diseases. Yet, our ability to identify and validate

effective combinations is limited by a combinatorial explosion, driven by both the large

number of drug pairs as well as dosage combinations. Here we propose a network-based

methodology to identify clinically efficacious drug combinations for specific diseases. By

quantifying the network-based relationship between drug targets and disease proteins in the

human protein–protein interactome, we show the existence of six distinct classes of

drug–drug–disease combinations. Relying on approved drug combinations for hypertension

and cancer, we find that only one of the six classes correlates with therapeutic effects: if the

targets of the drugs both hit disease module, but target separate neighborhoods. This finding

allows us to identify and validate antihypertensive combinations, offering a generic, powerful

network methodology to identify efficacious combination therapies in drug development.
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Combination therapy, the use of multiple drugs to improve
clinical outcomes, has multiple advantages compared to
monotherapy1,2: it offers higher efficacies or, through

lower individual dosage, it can reduce the risk of adverse effects3.
Consequently, combination therapies are widely used in the
treatment of multiple complex diseases, from hypertension 4 to
cancer5 and infectious diseases6,7. However, the systematic
identification of drug combinations that simultaneously offer
high clinical efficacy and low toxicity is often driven by intuition
and experience rather than established principles. There is a
pressing need, therefore, for novel methodologies to facilitate the
discovery of multicomponent therapy.

One approach is the systematic high-throughput testing of
pairwise drug combinations, which, however, faces a combinatorial
challenge: for 1000 U.S. Food and Drug Administration (FDA)-
approved drugs, there are 499,500 possible pairwise combinations
that should be tested over approximately 3000 human diseases and
multiple dosage combinations5,6,8,9. We are, therefore, far from
even a cursory exploration of the vast number of possible combi-
nations with potentially positive clinical outcomes. To be sure,
several machine learning-based “black-box” models have been
developed to predict drug combinations10–12, offering a modest
increase in accuracy10 over random guesses11. We lack, however,
predictive, mechanism-driven, network-medicine-based approaches
to predict efficacious drug combinations.

Network-based approaches have already offered a promising
framework to identify novel insights to accelerate drug
discovery13, helping us quantify both disease–disease14 and
drug–disease15,16 relationships. These methodological
advances have raised the possibility of moving beyond the
“one-drug, one-target” paradigm and exploring the “multiple-
drugs, multiple-targets” possibilities offered by aiming at
simultaneously modulating multiple disease proteins within the
same disease module, while minimizing toxicity profiles17–21.
In this study, we quantify the relationship between drug
targets and disease proteins in the human protein–protein
interactome, leading to a rational, network-based drug combi-
nation design strategy.

Results
Network-based proximity measure of drug–drug relationships.
Disease proteins are not scattered randomly in the interactome,
but tend to form localized neighborhoods, known as disease
modules14. An efficient way to capture network proximity
between a drug (X) and a disease (Y) is by the z-score (z ¼ d�μ

σ ),
which relies on the shortest path lengths d(x, y) between drug
targets (x) and disease proteins (y).

d X;Yð Þ ¼ 1
Yk k
X
y2Y

minx2Xdðx; yÞ ð1Þ

The z-score is obtained by comparing the observed distance to
a reference distance distribution between a randomly selected
group of proteins of matching size and degree distribution as the
disease proteins and drug targets in the human interactome. The
z-score is applicable when the reference distribution is well
described by a Gaussian (Supplementary Note 1) and was
successfully used to identify well-known and new drug–disease
relationships in the human interactome for monotherapy15. Here,
we hypothesize that exploring the network-based relationship
between two drugs and their targets, and the disease proteins in
the disease module would help clarify the mechanism-of-action of
effective drug combinations while minimizing adverse effects
(Supplementary Fig. 1).

To test our hypothesis, we assembled 243,603 experimentally
confirmed protein–protein interactions (PPIs) connecting 16,677

unique proteins from five data sources (Supplementary Note 2
and Supplementary Data 1). We also compiled 1978 FDA-
approved or clinically investigational drugs that have at least two
experimentally reported targets by pooling the high-quality
drug–target binding affinity profiles from six data sources
(Supplementary Data 2). In order to fully characterize the mutual
relationship of two drugs and a disease module, we need a
network-based proximity measure between the two drugs’ targets,
as well. Although it has not been tested for this purpose, in
principle, we could rely on the z-score for this task. However, in
contrast to the relatively large disease modules, each drug has
only a small number of experimentally reported targets (on
average 3, Supplementary Fig. 2). Therefore, the randomization
procedure is not producing a Gaussian distribution as described
in our previous study15, limiting the applicability of the z-score.
Indeed, we find that the z-score cannot discriminate FDA-
approved pairwise combinations or clinically reported adverse
drug interactions from random drug pairs (Supplementary Fig. 3).
Instead of relying on randomization, therefore, we measure the
network proximity of drug–target modules A, B as reflected in
their target localizations using the recently introduced separation
measure14:

sAB � dABh i � dAAh i þ dBBh i
2

ð2Þ

which compares the mean shortest distance within the inter-
actome between the targets of each drug, 〈dAA〉 and 〈dBB〉, to the
mean shortest distance 〈dAB〉 between A–B target pairs (Fig. 1a).
In 〈dAB〉, targets associated with both drugs A and B have a zero
distance by definition. For sAB < 0, the targets of the two drugs are
located in the same network neighborhood (Fig. 1b), while for
sAB ≥ 0, the two drug targets are topologically separated (Fig. 1c).
For example, imatinib (I) is an FDA-approved agent for the
treatment of chronic myeloid leukemia22. Figure 1a, b shows that
imatinib’s targets are in the same network neighborhood as the
targets of tandutinib (T), a FMS-like tyrosine kinase 3 (FLT3)
inhibitor under phase III trial for treating acute myeloid
leukemia23; consequently the separation score between their
targets is negative, sIT=−0.35. However, the targets of
natalizumab (N), an FDA-approved monoclonal antibody for
treating multiple sclerosis24, are in a topologically distinct
neighborhood from the targets of imatinib and tandutinib,
having a positive sIN= 0.59 and sTN= 0.49, respectively (Fig. 1c).

For a network-based approach to drug combinations to be
effective, we need to establish if the topological relationship between
two drug–target modules, as captured by sAB, reflects biological and
pharmacological relationships, as well. We find that the network
proximity (sAB; Eq. (2)) of the targets of drug–drug pairs in the
human interactome correlates with chemical, biological, functional,
and clinical similarities (Fig. 1d–j), outperforming the target-overlap
approaches (Supplementary Fig. 4). This suggests that each
drug–target module has a well-defined network-based footprint. If
the footprints of two drug–target modules are topologically
separated (sAB ≥ 0), then the drugs are pharmacologically distinct.
If the footprints of two drug–target modules overlap (sAB < 0), the
magnitude of the overlap is indicative of their pharmacological
relationship: closer network proximity of targets of a drug pair
indicates higher similarities in their chemical, biological, functional,
and clinical profiles (Supplementary Fig. 5). In contrast, we find that
the z-score measure of the targets of drug–drug pairs in the human
interactome does not correlate with chemical, biological, functional,
and clinical similarities (Supplementary Fig. 6). We also compared
network proximity (sAB) against five other network-based measures
between targets of drug–drug pairs (Supplementary Fig. 7): (1)
separation (Eq. (2)), (2) closest, (3) shortest, (4) kernel, and
(5) centre (see Methods). Relying on 681 FDA-approved or
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experimentally validated pairwise drug combinations across all
human diseases (Supplementary Data 3), we find that FDA-
approved drug combinations have lower sAB compared to random
drug pairs and the separation-based measure outperforms all four
alternative measures as well as traditional chemoinformatics and
bioinformatics approaches (Supplementary Figs. 7–9), confirming
that sAB offers a reliable measure of drug–drug relationships within
the human interactome.

Network configurations of drug–drug–disease combinations.
Next, we turn to quantify the network-based relationship between
two drug–target modules and a disease module (drug–drug–disease
combinations). We find that from a network perspective, all
possible drug–drug–disease combinations can be classified into six
topologically distinct classes: (a) Overlapping Exposure: Two
overlapping drug–target modules that also overlap with the disease
module of interest (P1 in Fig. 2a); (b) Complementary Exposure:

b
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Fig. 1 Network-based model of drug–drug relationship. a A subnetwork of the human interactome illustrating the network-based relationship between drug
targets associated with three drugs (imatinib [I], tandutinib [T], and natalizumab [N]). b, c The definition of drug pairs that are topologically overlapping (sAB <
0, b) or topologically separated (sAB≥0, c). d–j The interplay between topological separation of drug pairs and five types of drug profiles: drug–drug chemical
similarity (d); drug target-encoding gene co-expression pattern across human tissues (e); drug target protein sequence similarity (f). Using the Gene Ontology
(GO) annotations, we determine for each drug how similar its associated target-encoding genes are in terms of their biological processes (g), cellular
component (h), and molecular function (i); and clinical similarity (j) of drug pairs derived from Anatomical Therapeutic Chemical Classification Systems codes
(see Methods). Overlapping drug pairs are highlighted in orange (sAB < 0); topologically separated drug pairs are highlighted in blue (sAB≥0)
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Two separated drug–target modules that overlap individually with
the disease module (P2 in Fig. 2b); (c) Indirect Exposure: One
drug–target module of two overlapping drug–target modules
overlaps with the disease module (P3 in Fig. 2c); (d) Single Expo-
sure: One drug–target module separated from another drug–target

module overlaps with the disease module (P4 in Fig. 2d); (e) Non-
exposure: Two overlapping drug–target modules are topologically
separated from the disease module (P5 in Fig. 2e); and (f) Inde-
pendent Action: Each of the drug–target modules and the disease
module are topologically separated (P6 in Fig. 2f). The question is,
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do these six classes manifest in detectable differences in clinical
efficacy for drug combinations?

To understand which of these drug–drug–disease configura-
tions have the greatest clinical efficacy, we focus on hypertension
and cancer, two diseases with a large number of FDA-approved
pairwise combinations (Supplementary Data 3). We find that four
out of six drug–drug–disease configurations (P3–P6 in Fig. 2c–f)
do not show a statistically significant tendency to co-treat cancer
(Supplementary Fig. 10c–10f) or hypertension (Fig. 2c–f and
Supplementary Fig. 11c–11f). In other words, if at least one drug
in a combination fails to be localized to the vicinity of the disease
module, the combination does not have a therapeutic effect
greater than monotherapy. This leads to our first major finding:
for a drug pair to have a therapeutic effect, both drug–target
modules must overlap with the disease module. This finding
highlights the need to inspect the network-relationship between
drug targets and disease proteins as we search for therapeutically
beneficial combinations.

The second finding is that Overlapping Exposure, i.e., when the
drug–target modules overlap with each other as well as with the
disease module, has no statistically significant efficacy in treating
the disease over monotherapy. Overlapping Exposure does,
however, have statistically significant adverse effects, such as
causing high blood pressure (Supplementary Data 4) compared to
the control group (P < 1.0 × 10−4, permutation test, Overlapping
Exposure [P1], Fig. 2a). For example, two FDA-approved
hypertensive drugs, nadroparin and spironolactone, fall into the
Overlapping Exposure (P1, Table 1) category with the hyperten-
sion disease module, in line with the observation that nadroparin
increased the hyperkalemic effect (adverse effect) of spironolac-
tone25. Cancer is a chronic disease with a strong genetic
contribution, rarely caused by adverse drug–drug interactions.
We therefore limit our testing of Overlapping Exposure in three
cardiovascular outcomes, finding that Overlapping Exposure has
statistically significant adverse effects on three cardiovascular
outcomes (Supplementary Fig. 12): arrhythmia (P < 1.0 × 10−4,
permutation test), heart failure (P < 1.0 × 10−4, permutation test),
and myocardial infarction (P < 1.0 × 10−4, permutation test),
consistent with previously reported overlapping toxicities26.

The third key finding is that only drug pairs that have a
Complementary Exposure relationship to the disease module
(Fig. 2b and Supplementary Fig. 10b) show a statistically
significant efficacy for drug combination therapies. Consider,
for example, amiloride and hydrochlorothiazide, in the Com-
plementary Exposure (P2 in Table 1) class. This combination has
been shown to prevent glucose intolerance and to improve blood
pressure control compared with monotherapy with either drug in
the PATHWAY-3 trial27. In other words, we find that only
separated drugs that individually overlap with the disease module
show statistical significance in co-treatment of hypertension

(P < 1.0 × 10−4, permutation test, Complementary Exposure in
Fig. 2b and Supplementary Fig. 11b) and similarly for cancer (P <
1.0 × 10−4, permutation test, Supplementary Fig. 10b). Specifi-
cally, we assembled hypertensive drug combination data from
FDA-approved evidence, clinical trials from the Clinicaltrials.gov
database, and pre-clinical studies from literature curation
(Supplementary Data 3), finding again that drug pairs with
Complementary Exposure (P2) significantly tend to co-treat
hypertension efficiently (Fig. 2b) compared to FDA-approved
antihypertensive combinations (Supplementary Fig. 11b), indi-
cating low selection bias. The unique network-based relationship
that drug pairs with Complementary Exposure to the disease
module tend to be effective drug combinations is consistent with
the non-overlapping pharmacological principle in rational drug
combination design26. In summary, characterizing the network-
based relationship between drug–target modules and the disease
module (Complementary Exposure) within the human inter-
actome offers a powerful, network-based strategy for rational
drug combination design.

Network-based uncovering of hypertensive drug combinations.
The finding that Complementary Exposure is predictive of
effective drug combinations prompts us to offer network-based
predictions of new drug combinations using hypertension data as
a validation set (Supplementary Data 3). Such a predictor builds
on two established network approaches: (a) network-based
separation (Eq. (2)) between targets of two drugs14; and (b)
network proximity (Eq. (1)) between the disease (hypertension)
module and the two drug–target modules15. Specifically, we rank
all possible drug pairs by increasing separation score (sAB). We
then restrict this list to drug pairs with Complementary Exposure
(Fig. 2b) to the hypertension disease module. In principle, this
approach allows us to identify pairwise combinations not only
between two hypertensive drugs, but also between one hyper-
tensive drug and one non-hypertensive drug, or between two
non-hypertensive drugs. Here, we focus on drug combinations
involving 65 FDA-approved hypertensive drugs (Fig. 3a). The 24
FDA-approved combinations involving hypertensive drugs
(Supplementary Data 3) lead to a 59% accuracy (AUC= 0.589 ±
0.002) for the network-based discrimination of the approved
hypertensive drug combinations from random drug pairs. This
network-based approach outperforms traditional chemoinfor-
matics (AUC= 0.489 ± 0.002) and bioinformatics approaches
(AUC= 0.529 ± 0.002, Supplementary Fig. 13), indicating that
network proximity offers an efficacious strategy to identify new
drug combinations for treatment of hypertension.

To exploit the predictive power of this network-based
prediction prospectively, we first focus on hydrochlorothiazide,
an FDA-approved inhibitor on the sodium-chloride symporter
for treatment of hypertension28. Our network-based algorithm

Fig. 2 The efficacy of hypertensive drug–drug interactions. a–f Schematic diagrams of the six distinct classes capturing the network-based relationship
between two drug–target modules and one disease module on a drug–drug–disease combination. For sAB < 0, the two sets of drug targets overlap
topologically (Fig. 1b); while for sAB≥ 0, the two sets of drug targets are separated topologically (Fig. 1c). The z-scores (z), measuring the drug–disease
separation, are calculated for quantifying the significance of the shortest paths between drug targets and disease proteins in the human protein–protein
interactome. For z < 0, the drug–target module and the disease module overlap; while for z≥ 0, the drug–target module and the disease module are
separated. Color histograms (Real) show the antihypertensive combinations (purple) and clinically reported adverse drug interactions on high blood
pressure (blue), respectively. We assembled the antihypertensive combinations from three types of experimental evidences: (i) FDA-approved evidence,
(ii) clinical data from Clinicaltrials.gov database, and (iii) preclinical studies from literature (Supplementary Data 3). We randomly selected the same
number of adverse drug–drug interactions related to high blood pressure from 1512 clinically reported adverse drug–drug interactions (Supplementary
Data 4) corresponding to the number of antihypertensive combinations using a bootstrapping algorithm in R software and this process was repeated 100
times (Supplementary Note 5). Gray boxes (Random) show random expectation. Error bars indicate the standard deviation. The P-value (P) is calculated by
testing 10,000 permutations (Supplementary Note 5). The network-based relationships between two drug–target modules and one disease module for
FDA-approved hypertensive drug combinations only are illustrated in Supplementary Fig. 11
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offers 30 potentially efficacious combinations involving hydro-
chlorothiazide, of which 21 (70% success rate) are already
validated by FDA-approved evidence, clinical studies from
Clinicaltrials.gov, or previously reported preclinical data (Supple-
mentary Table 1). Specifically, we restrict the predicted drug pairs
on hydrochlorothiazide with Complementary Exposure and select
the top 30 candidates ranked based on their increasing separation
score (sAB). For example, the predicted spironolactone and
hydrochlorothiazide combination has been approved for treating
hypertension and fluid retention in patients with congestive heart
failure or nephrotic syndrome (Table 1). Figure 3b shows the
network-based relationship between targets of spironolactone and
hydrochlorothiazide within the hypertension disease module.
We find that hydrochlorothiazide targets the sodium-chloride
symporter pathway (e.g., SLC12A3) and spironolactone targets
the mineralocorticoid receptor pathway (e.g., NR3C2), both in the
hypertension disease module following by the Complementary
Exposure category (Figs. 2b, 3b). Avapro, a combination of
irbesartan (an FDA-approved angiotensin receptor blocker for
the treatment of hypertension) and hydrochlorothiazide, has been
approved for the treatment of hypertension (Application No.
20758S003, Supplementary Table 1) is predicted to be an
efficacious combination by this approach. Nifedipine, an
approved voltage-dependent calcium channel blocker for the
treatment of hypertension, is another network-predicted combi-
nation partner for hydrochlorothiazide. A recent preclinical study
reported that combining nifedipine (10 mg/kg/day) with hydro-
chlorothiazide (10 mg/kg/day) showed a significant synergistic
effect on blood pressure reduction, blood pressure variability
enhancement, and organ protection in spontaneously hyperten-
sive rats29. Telmisartan, an angiotensin II receptor antagonist, is
the other network-predicted combination partner for hydro-
chlorothiazide. Multiple clinical trials registered in Clinicaltrials.
gov are under way or have been completed that reveal potentially
therapeutic combination effects of telmisartan and hydrochlor-
othiazide on the treatment of hypertension (NCT00509470,
NCT00239369, and NCT00144222). Altogether, the network-
based model has successfully identified well-known hypertensive
drug combinations with well-defined drug pharmacological
pathways in the hypertension disease module (Fig. 3b).

Finally, our approach helps us computationally identify several
drug combinations for the treatment of hypertension. For example,

ethacrynic acid, a sodium/potassium/chloride symporter inhibitor,
is approved by FDA to treat hypertension, congestive heart failure,
and kidney failure. Our network-based model reveals that
ethacrynic acid has the highest likelihood for validating combina-
tion with hydrochlorothiazide to treat hypertension (Supplementary
Table 1), representing a potential drug combination. Guanfacine, an
approved alpha-2 adrenoreceptor inhibitor to treat hypertension
and attention deficit hyperactivity disorder, is predicted to have a
high likelihood when used together with hydrochlorothiazide
(Supplementary Table 1), representing another potential drug
combination for the treatment of hypertension. In total, we
computationally identified 1455 potential combinations involving
65 hypertensive drugs with Complementary Exposure to the
hypertension disease module (Supplementary Data 5). In addition,
we provide an exhaustive list of predicted drug combinations
involving non-hypertensive drugs with Complementary Exposure
and potential adverse drug interactions involving drug pairs with
Overlapping Exposure to the hypertension disease module
(Supplementary Data 5), offering a potential virtual hypertensive
drug combination database for future experimental validation and
prospective clinical trials. Taken together, the network-based
models developed here offer a powerful tool to identify efficacious
drug combinations for the treatment of hypertension.

Discussion
Combination therapies offer widespread well-documented
advantages in the treatment of complex diseases. Here, we
demonstrated that a network-based methodology that identifies
the relative network configuration of drug–target modules with
respect to the disease module can help prioritize potentially
efficacious pairwise drug combinations for both hypertension and
cancer. Specifically, our interactome-based approach offers a
network-level view of therapeutic combinations in terms of
comparative efficacy and adverse interactions. Our key finding is
that a drug combination is therapeutically effective only if it
follows a specific network topological relationship to the disease
module, as captured by the Complementary Exposure pattern.
Somewhat surprisingly, if we are searching for therapeutically
synergistic combinations, the two drug–target modules must not
only overlap with the disease module, but also need to be sepa-
rated in the human interactome without overlapping toxicities26.

Table 1 Network configurations of the selected hypertensive drug–drug pairs

Drug A Drug B Network
separation
(sAB)

Network
pattern

Description

Drug combinations
Hydrochlorothiazide Nifedipine 0.14 P2 Synergistic reduction of blood pressure in spontaneously hypertensive rats.
Hydrochlorothiazide Nebivolol 0.29 P2 Hydrochlorothiazide and Nebivolol reduce both diastolic blood pressure and

systolic blood pressure vs. baseline in patients.
Captopril Oxprenolol 0.33 P2 Effectively control blood pressure without any negative metabolic effects.
Hydrochlorothiazide Telmisartan 0.36 P2 Co-treat hypertension.
Hydrochlorothiazide Amiloride 0.42 P2 Prevent glucose intolerance and improve blood pressure control compared with

monotherapy.
Captopril Isradipine 0.49 P2 Co-treatment is more effective than captopril given with a low dose of

hydrochlorothiazide.
Hydrochlorothiazide Spironolactone 0.59 P2 Co-treat hypertension and water retention in patients with congestive heart

failure or nephrotic syndrome.
Adverse drug interactions
Nadroparin Spironolactone −0.11 P1 Increased hyperkalemic activities by co-treatment.
Hydrochlorothiazide Diazoxide −0.90 P1 Increased blood sugar more than expected.

Network proximity and drug–drug–disease network pattern analyses for 9 selected drug pairs involving anti-hypertensive drugs on the hypertension disease module. Two network patterns, Overlapping
Exposure (P1) and Complementary Exposure (P2), are illustrated in Fig. 2a, b
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Here we documented the predictive power of Complementary
Exposure in two complex diseases (hypertension and cancer)
based on known drug combination data from publicly available
databases. Therefore, future work is needed to explore the gen-
eralizability of our findings to other diseases.

Drug pairs with Complementary Exposure are expected to have
either therapeutic (Fig. 2b) or adverse effects (Supplementary
Fig. 11b and Supplementary Fig. 12b). For example, a recent clinical
study has reported that combining amiloride and hydro-
chlorothiazide (Complementary Exposure in Fig. 3b) induced
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hypokalemia (adverse effect) in hypertensive patients30. Altogether,
adverse effects can appear independently from the separation of the
two drug target modules, occurring significantly in both Over-
lapping Exposure (Supplementary Fig. 11a and Supplementary
Fig. 12a) and Complementary Exposure (Supplementary Fig. 11b
and Supplementary Fig. 12b). Lack of dose-dependent information
and precise perturbation effects of disease-causing variants and drug
exposure generate a coupled interplay between adverse and ther-
apeutic effects31 for Complementary Exposure. Integration of net-
work proximity, high-throughput in vitro or in vivo assays,
pharmacokinetics-based mathematical modeling (e.g., cytochrome
P450 enzymes32), large-scale pharmacointeraction networks33, and
patient data (i.e., health insurance claims and electronic health
records)16 could establish the causal mechanism and clinical evi-
dence through which drug combinations could be identified with
specific therapeutic indications without obvious adverse effects34,35.
In addition, future work is needed to explore the effects of potential
data selection bias. For example, combinations of drugs that target
related proteins in the same disease module are more likely to be
tested in drug combination clinical trials. Finally, given the lack of
large-scale, systematic data on combinations of multiple drugs, in
our current study, we limited our exploration on drug pairs only.
Yet, we expect that Complementary Exposure remains an efficient
design principle even upon combining multiple drugs. To fight the
combinatorial explosion upon inspecting network relationships of
multiple drug–target modules with a disease module, theories of
signed networks can be of great help, such as structural balance
theories36, reducing the number of network patterns to investigate
in the human interactome. In addition, advanced network-based
link prediction methods rooted in biological principles37 can help to
develop a combined, quantitative score for each predicted drug
combination. Eventually, experimental validation and prospective
clinical trials must be conducted to verify the network-predicted
drug combinations under controlled conditions. As for the input
data, having a more complete human interactome and more
complete, systematic drug–target network with well-annotated
pharmacokinetics and pharmacodynamics information would
improve the performance of the network-based model further.

In summary, our findings suggest that the discovery of effica-
cious drug combinations could benefit from network-based,
rational drug combination screenings, exploring the relationship
between drug–target modules and the disease modules via net-
work proximity in the human interactome. From a translational
perspective, the network tools developed here could help develop
novel, efficacious combination therapies for multiple complex
diseases if broadly applied.

Methods
Constructing the human protein–protein interactome. We assembled 15
commonly used databases, focusing on high-quality PPIs with five types of
evidences: (1) binary, physical PPIs tested by high-throughput yeast-two-hybrid
(Y2H) screening system, combining binary PPIs tested from two publicly
available high-quality Y2H datasets38,39, and one unpublished dataset, available

at http://ccsb.dana-farber.org/interactome-data.html; (2) literature-curated PPIs
identified by affinity purification followed by affinity-purification mass spec-
trometry (AP-MS), Y2H, and literature-derived low-throughput experiments;
(3) binary, physical PPIs derived from protein three-dimensional structures; (4)
kinase-substrate interactions by literature-derived low-throughput and high-
throughput experiments; and (5) signaling networks by literature-derived low-
throughput experiments. The protein-coding genes were mapped to their official
gene symbols based on GeneCards (http://www.genecards.org/) and their Entrez
ID. Computationally inferred interactions rooted in evolutionary analysis, gene
expression data, and metabolic associations were excluded. The updated human
interactome includes 243,603 PPIs connecting 16,677 unique proteins, and is
40% greater in size compared to our previously used human interactome14. The
human protein–protein interactome are provided in the Supplementary Data 1.

Construction of drug–target network. We collected high-quality physical
drug–target interactions on FDA-approved or clinically investigational drugs from 6
commonly used data sources, and defined a physical drug–target interaction using
reported binding affinity data: inhibition constant/potency (Ki), dissociation con-
stant (Kd), median effective concentration (EC50), or median inhibitory con-
centration (IC50) ≤ 10 µM. Drug–target interactions were acquired from the
DrugBank database (v4.3)40, the Therapeutic Target Database (TTD, v4.3.02)41, and
the PharmGKB database (December 30, 2015)42. Specifically, bioactivity data of
drug–target pairs were collected from three widely used databases: ChEMBL (v20,
accessed in December 2015)43, BindingDB (downloaded in December 2015)44, and
IUPHAR/BPS Guide to PHARMACOLOGY (downloaded in December 2015)45.
After extracting the bioactivity data related to drugs from these databases, we
retained only the drug–target interactions that meet the following four criteria: (i)
binding affinities, including Ki, Kd, IC50 or EC50 each ≤10 μM; (ii) proteins can be
represented by unique UniProt accession number; (iii) proteins are marked as
“reviewed” in the UniProt database46; and (iv) proteins are from Homo sapiens.
In total, 15,051 drug–target interactions connecting 4428 drugs and 2256 unique
human targets were built, including 1978 drugs that have at least two experi-
mentally validated targets (Supplementary Data 2).

Collecting gold-standard pairwise drug combinations. In this study, we focused
on pairwise drug combinations by assembling the clinical data from the multiple
data sources (Supplementary Note 3). Each drug in combinations was required to
have the experimentally validated target information: each EC50, IC50, Ki, or Kd ≤
10 µM. Compound name, generic name, or commercial name of each drug was
standardized by MeSH and UMLS vocabularies47 and further transferred to
DrugBank ID from the DrugBank database (v4.3)40. Duplicated drug pairs were
removed. In total, 681 unique pairwise drug combinations connecting 362 drugs
were retained (Supplementary Data 3).

Collecting adverse drug–drug interactions. We compiled clinically reported
adverse drug–drug interactions (DDIs) data from the DrugBank database (v4.3)40.
Here, we focused on adverse drug interactions where each drug has the experi-
mentally validated target information. Compound name, generic name, or com-
mercial name of each drug were standardized by MeSH and UMLS vocabularies47

and further transferred to DrugBank ID from the DrugBank database (v4.3)40. In
total, 13,397 clinically reported adverse DDIs connecting 658 unique drugs were
retained (Supplementary Data 4). In addition, we collected cardiovascular event-
specific adverse DDIs from the TWOSIDE database35. TWOSIDE includes over
868,221 significant associations connecting 59,220 drug pairs and 1301 adverse
events35. In this study, we focused on 4 types of cardiovascular events: arrhythmia
(MeSH ID: D001145), heart failure (MeSH ID: D006333), myocardial infarction
(MeSH ID: D009203), and high blood pressure (MeSH ID: D006973).

Chemical similarity analysis of drug pairs. We downloaded chemical structure
information (SMILES format) from the DrugBank database (v4.3)40 and computed
MACCS fingerprints of each drug using Open Babel v2.3.148. If two drug molecules
have a and b bits set in their MACCS fragment bit-strings, with c of these bits being

Fig. 3 Network-based stratification of hypertensive drug combinations. a Heatmap showing the predicted network-based separation (sAB) among 65
FDA-approved anti-hypertensive drugs. Drugs are clustered based on their target families. FDA-approved or experimentally validated drug
combinations for the treatment of hypertension are highlighted by circles (o). Clinically reported adverse drug interactions are highlighted by X. Color
keys are shown by sAB. The right heatmap highlighting the four distinct classes capturing the network-based relationship (P1–P4, Fig. 2a–d) for 65
FDA-approved anti-hypertensive drugs on the hypertension disease module. b A network map showing the relationship between the drug–target
modules and the hypertension disease module (the largest connected subgraph by red) in the human interactome. Complementary Exposure for two
FDA-approved drug combinations (hydrochlorothiazide–amiloride and hydrochlorothiazide–spironolactone) are highlighted by blue and orange via
blue arrow, respectively. Overlapping Exposure for two clinically reported adverse drug–drug interactions (diazoxide–hydrochlorothiazide and
diazoxide–bendroflumethiazide) are also illustrated by red arrow. The target families of 65 FDA-approved anti-hypertensive drugs are highlighted by
different colors in both (a) and (b). The edges in (b) denote the protein–protein interactions (PPIs) colored by different types of hypertensive drug
target families or known hypertension disease proteins (genes)
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set in the fingerprints of both drugs, the Tanimoto coefficient (T) of a drug–drug
pair is defined as:

T ¼ c
aþ b� c

ð3Þ

T is widely used in drug discovery and development49, offering a value in the range
of zero (no bits in common) to one (all bits are the same).

Protein sequence similarity (identity) analysis. We downloaded the canonical
protein sequences of drug targets (proteins) in Homo sapiens from UniProt
database (http://www.uniprot.org/). We calculated the protein sequence similarity
SP(a, b) of two drug targets a and b using the Smith–Waterman algorithm50. The
Smith–Waterman algorithm performs local sequence alignment by comparing
segments of all possible lengths and optimizing the similarity measure for deter-
mining similar regions between two strings of protein canonical sequences of
drug targets. The overall sequence similarity of the targets binding two drugs A and
B is determined by Eq. (4) by averaging all pairs of proteins a and b with a 2 A
and b 2 B under the condition a≠b. This condition ensures that for drugs with
common targets we do not take pairs into account where a target would be
compared to itself.

hSpi ¼
1

npairs

X
fa;bg

Sp a; bð Þ ð4Þ

Gene co-expression analysis. We downloaded the RNA-seq data (RPKM value)
across 32 tissues from GTEx V6 release (accessed on April 2016, https://gtexportal.
org/). For each tissue, we regarded those genes with RPKM ≥ 1 in more than 80%
samples as tissue-expressed genes. To measure the extent to which drug target-
coding genes (a and b) associated with the drug-treated diseases are co-expressed,
we calculated the Pearson’s correlation coefficient (PCC a; bð Þ) and the corre-
sponding P-value via F-statistics for each pair of drug target-coding genes a and b
across 32 human tissues. In order to reduce the noise of co-expression analysis, we
mapped PCC(a, b) into the human protein–protein interactome network (Sup-
plementary Methods 2) to build a co-expressed protein–protein interactome net-
work as described previously51. The co-expression similarity of the drug target-
coding genes associated with two drugs A and B is computed by averaging PCC(a,
b) over all pairs of targets a and b with a 2 A and b 2 B as below:

hScoi ¼
1

npairs

X
fa;bg

jPCC a; bð Þj ð5Þ

Gene Ontology (GO) similarity analysis. The Gene Ontology (GO) annotation
for all drug target-coding genes was downloaded from the website: http://www.
geneontology.org/. We used three types of the experimentally validated or
literature-derived evidences: biological processes (BP), molecular function (MF),
and cellular component (CC), excluding annotations inferred computationally. The
semantic comparison of GO annotations offers quantitative ways to compute
similarities between genes and gene products. We computed GO similarity SGO(a,
b) for each pair of drug target-coding genes a and b using a graph-based semantic
similarity measure algorithm52 implemented in an R package, named GOSem-
Sim53. The overall GO similarity of the drug target-coding genes binding to two
drugs A and B was determined by Eq. (6), averaging all pairs of drug target-coding
genes a and b with a 2 A and b 2 B.

hSGOi ¼
1

npairs

X
fa;bg

SGO a; bð Þ ð6Þ

Clinical similarity analysis. Clinical similarities of drug pairs derived from the
drug Anatomical Therapeutic Chemical (ATC) classification systems codes have
been commonly used to predict new drug targets54. The ATC codes for all FDA-
approved drugs used in this study were downloaded from the DrugBank database
(v4.3)40. The kth level drug clinical similarity (Sk) of drugs A and B is defined via
the ATC codes as below.

Sk A;Bð Þ ¼ ATCkðAÞ \ ATCkðBÞ
ATCkðAÞ∪ATCkðBÞ

ð7Þ

where ATCk represents all ATC codes at the kth level. A score Satc(A, B) is used to
define the clinical similarity between drugs A and B:

Satc A;Bð Þ ¼
Pn

k¼1 Sk A;Bð Þ
n

ð8Þ

where n represents the five levels of ATC codes (ranging from 1 to 5). Note
that drugs can have multiple ATC codes. For example, nicotine (a potent
parasympathomimetic stimulant) has four different ATC codes: N07BA01,
A11HA01, C04AC01, C10AD02. For a drug with multiple ATC codes, the
clinical similarity was computed for each ATC code, and then, the average
clinical similarity was used54.

Comparison with target set-overlapping approach. In this section, we compared
the introduced network-based separation (Eq. (2)) of drugs with overlap measures
that are solely based on shared targets, without using the PPI network. Here, we
examined two measures to quantify the overlap between target sets of drug A and
drug B:

Overlap coefficient C ¼ A \ Bj j=minð Aj j; Bj jÞ ð9Þ

Jaccard� index J ¼ A \ Bj j= A∪Bj j ð10Þ
Both values range from 0 to 1: J, C= 0 revealing no common targets shared by

the drugs. An overlap coefficient C= 1 indicates that one set is a complete subset of
the other, where Jaccard-index J= 1 is for two identical target sets (Supplementary
Fig. 4a). Supplementary Figs. 4b and 4c show the distribution of C and J for all
1,955,253 drug pairs. The target-set overlap is low for most drug pairs, and the
majority (96.8%= 1,892,455/1,955,253) do not share any targets. To investigate the
statistical significance of the observed overlaps, we used a hypergeometric model.
The null hypothesis is that drug targets are randomly located from the space of all
N protein-coding genes in the human interactome. The overlap expected for two
target sets A and B is then given by

crand ¼ Aj j ´ Bj j
N

ð11Þ

For every observed overlap cobs ¼ A \ Bj j, we then determined the fold-change

fc ¼ cobs
crand

ð12Þ
and the P-values for enrichment and depletion (e.g., fewer common targets than

expected), based on the hypergeometric distribution.

Network-based separation of drugs. A network-based separation of a drug pair,
A and B, is calculated via Eq. (2). We evaluated four other different distance
measures that take into account the path lengths between two drug target sets: (a)
the closest measure, representing the average shortest path length between targets
of drug A and the nearest target of the drug A; (b) the shortest measure, repre-
senting the average shortest path length among all targets of drugs; (c) the kernel
measure, down-weighting longer paths via an exponential penalty; (d) the centre
measure, representing the shortest path length among all targets of drugs with the
greatest closeness centrality among drug targets. Given A and B, the set of drug
targets for A and B, and dAB, the shortest path length between nodes a and b in the
interactome, we define these distance measures as follows:

Closest : hdCABi ¼
1

Aj jj j þ Bk k
X
a2A

minb2Bd a; bð Þ þ
X
b2B

mina2Ad a; bð Þ
 !

ð13Þ

Shortest : hdSABi ¼
1

Ak k ´ Bk k
X

a2A;b2B
dða; bÞ ð14Þ

Kernel : hdkABi ¼
�1

Aj jj j þ Bk k
X
a2A

ln
X
b2B

e�ðd a;bð Þþ1Þ

Bk k þ
X
b2B

ln
X
a2A

e�ðd a;bð Þþ1Þ

Ak k

 !

ð15Þ

Centre : hdccABi ¼ dðcentreA; centreBÞ ð16Þ
where centreB, the topological centre of A, is defined as

centreB ¼ argminu2B
X
b2B

dðb; uÞ ð17Þ

If the centreA or centreB is not unique, all the nodes in centreA or centreB are used to
define the centre, and shortest path lengths between these nodes are averaged. If the
centreB is not unique, all nodes are used to define the centre and the shortest path
lengths to these nodes are averaged.

Collecting disease-association genes. We integrated disease–gene annotation
data from 8 different resources and excluded the duplicated entries (Supplementary
Note 4). We annotated all protein-coding genes using gene Entrez ID, chromo-
somal location, and the official gene symbols from the NCBI database55. Each
cardiovascular event was defined by MeSH and UMLS vocabularies47. In this study,
we constructed disease-associated genes for 4 types of cardiovascular events:
arrhythmia (MeSH ID: D001145), heart failure (MeSH ID: D006333), myocardial
infarction (MeSH ID: D009203), and hypertension/high blood pressure (MeSH ID:
D006973).

Performance evaluation. We used area under the receiver operating characteristic
(ROC) curve (AUC) to evaluate how well the network proximity discriminates
FDA-approved or experimentally validated pairwise combinations from random
drug pairs. We counted the true positive rate and false positive rate at different
network proximities as thresholds to illustrate the ROC curve. As negative drug
pairs are not typically reported in the literature or publicly available databases, we
use all unknown drug pairs as negative samples. In addition, we selected the same
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portion of unknown drug pairs as positive samples to control the size imbalance.
We repeated this procedure 100 times and reported the average AUC values to
compare the performance of different approaches.

Statistical analysis. All statistical analyses were performed using the R package
(v3.2.3, http://www.r-project.org/).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Code availability
The code for network proximity calculation is available at github.com/emreg00/toolbox.
All other codes used in this study are available from the corresponding author upon
reasonable request.

Data availability
The publicly available human protein–protein interactome (Supplementary Data 1),
experimentally validated drug–target interactions (Supplementary Data 2),
experimentally validated drug combinations (Supplementary Data 3), clinically reported
adverse drug–drug interactions (Supplementary Data 4), and network-predicted
hypertensive drug combinations (Supplementary Data 5) are available in Supplementary
Data 1–5. The unpublished binary human protein–protein interactions are available at
http://ccsb.dana-farber.org/interactome-data.html.
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