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Abstract
Objectives: For rheumatoid arthritis (RA) patients failing to achieve treatment targets with conventional syn-
thetic disease-modifying antirheumatic drugs, tumor necrosis factor (TNF)-a inhibitors (anti-TNF therapies) are
the primary first-line biologic therapy. In a cross-cohort, cross-platform study, we developed a molecular test
that predicts inadequate response to anti-TNF therapies in biologic-naive RA patients.
Materials and Methods: To identify predictive biomarkers, we developed a comprehensive human
interactome—a map of pairwise protein/protein interactions—and overlaid RA genomic information to gener-
ate a model of disease biology. Using this map of RA and machine learning, a predictive classification algorithm
was developed that integrates clinical disease measures, whole-blood gene expression data, and disease-
associated transcribed single-nucleotide polymorphisms to identify those individuals who will not achieve an
ACR50 improvement in disease activity in response to anti-TNF therapy.
Results: Data from two patient cohorts (n = 58 and n = 143) were used to build a drug response biomarker panel
that predicts nonresponse to anti-TNF therapies in RA patients, before the start of treatment. In a validation
cohort (n = 175), the drug response biomarker panel identified nonresponders with a positive predictive value
of 89.7 and specificity of 86.8.
Conclusions: Across gene expression platforms and patient cohorts, this drug response biomarker panel strati-
fies biologic-naive RA patients into subgroups based on their probability to respond or not respond to anti-TNF
therapies. Clinical implementation of this predictive classification algorithm could direct nonresponder patients
to alternative targeted therapies, thus reducing treatment regimens involving multiple trial and error attempts of
anti-TNF drugs.
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Introduction
Rheumatoid arthritis (RA) is a complex autoimmune
disease with no cure. However, many potent treatment
options are available to mitigate the symptoms and ar-
rest progression of the disease. Treatment guidelines
recommend early therapeutic intervention to forestall
permanent functional debilitation associated with
structural joint damage.1–3 Antitumor necrosis factor-
a (anti-TNF) therapeutics are the first-line targeted
therapy for nearly 90% of biologic-naive RA patients
whose disease is not adequately controlled with con-
ventional synthetic disease modifying antirheumatic
drugs (csDMARDs), such as methotrexate.4,5 However,
*70% of these RA patients do not achieve meaningful
clinical change on anti-TNF therapy.6–16 Therefore,
there is a clinical need for a test that predicts which pa-
tients will not respond to anti-TNF agents before the
initiation of therapy.

RA patient treatment targets are defined by the Amer-
ican College of Rheumatology (ACR) as disease activity
scores indicating either disease remission or low disease
activity.17–19 Treatment response relative to baseline is
measured as ACR20, ACR50, and ACR70 where the
number refers to the percent improvement in a standard
set of measures.19 Factors used to calculate disease activ-
ity scores and ACR values include the number of swollen
joints, tender joints, and both patient- and physician-
reported assessments of pain and global health, as well
as blood biomarker levels.20 ACR20 is reported as the
benchmark in clinical trials for approval of new thera-
pies; however, an ACR20 response is often insufficient
to reach the clinically meaningful disease activity scores
outlined in RA treatment guidelines.21–24 Rather, pa-
tients typically need to achieve an ACR50 response to
reach disease activity scores corresponding to remission
or low disease activity.25

Complex multifactorial disorders such as RA have
traditionally been difficult to study.26 The lack of a
clear pattern of inheritance indicates that genetic in-
formation is integral to disease biology, but not suffi-
cient for diagnosis or to guide treatment choices.27,28

Classic approaches to understand disease biology rely
on either genetic analysis of mutations that drive
disease-associated phenotypes or high-throughput
molecular expression methodologies that are limited
in their ability to sufficiently represent the complexity
of the disease pathology.29 Advanced computational
approaches that combine clinical data with integrative
genetics are a necessary progression to bring modern
precision medicine to autoimmune diseases. Network-

based approaches to understanding human disease bi-
ology,30–33 collectively known as network medicine,
have the ability to reveal underlying molecular pat-
terns among features such as DNA markers and tran-
scripts. Commonly, RNA sequencing (RNAseq) data
have been used with the single purpose of analyzing
gene expression features. However, RNAseq data also
contain critical information on functionally active
single-nucleotide polymorphisms (SNPs) that, when
combined with transcript expression, have the poten-
tial to dramatically enhance the predictive power of a
molecular signature. This study describes a multifac-
eted computational approach to develop a clinically
useful tool to guide the treatment of RA patients.

Materials and Methods
Study populations
Discovery cohort. Patient microarray data (accession
GSE15258) were obtained from the Gene Expression
Omnibus. Details of sample collection and cohort
information were previously reported34; sample collec-
tion study protocols were approved by the local ethics
committees and patients provided informed consent.
Briefly, RA patients naive to anti-TNF therapy were en-
rolled and blood samples collected in PAXgene tubes.
Therapeutic response was evaluated 14 weeks after ini-
tiation of treatment according to the DAS28-CRP
EULAR response definition.35 Fifty-eight female pa-
tient samples were arbitrarily selected for this study.

Training cohort and validation cohort. RA patient
whole-blood samples and clinical measurements were
prospectively collected in the CERTAIN trial by the
Consortium of Rheumatology Researchers of North
America (CORRONA).36 The CERTAIN study was
designed as a prospective comparative effectiveness
study involving 43 sites and 117 rheumatologists. Insti-
tutional review board or ethics committee approvals
were obtained before sample collection and study par-
ticipation, and patients provided informed consent.
Samples selected for the present study were from pa-
tients who were biologic-naive at the time of sample
collection. Patients were treated with adalimumab, cer-
tolizumab pegol, etanercept, golimumab, or infliximab
at the discretion of the treating physician and followed
longitudinally for at least 6 months. In addition to a
medical history, clinical assessments collected at
0 and 6 months post-therapy initiation included tender
and swollen joint counts, physician and patient global
disease activity scores, csDMARD dose, patient pain
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evaluation, and quality-of-life surveys. Laboratory
studies performed at a central laboratory included a
complete blood count, C-reactive protein (CRP) levels,
rheumatoid factor titer, and anti-cyclic citrullinated
protein (anti-CCP) titer. Training (n = 143) and valida-
tion trial (n = 175) patient cohorts were balanced for
response rate, age, and gender. Patients were included
in the independent validation trial if they had a Visual
Analog Scale pain score37 of > 15 out of a maximum
score of 100. Consistent with the inclusion criteria of
the CERTAIN study, all patients in the validation trial
had a Clinical Disease Activity Index greater than 10.

Evaluation of clinical response to anti-TNF therapy
Among the CERTAIN study samples, response at
6 months after anti-TNF therapy initiation was defined
by ACR50. An ACR50 responder was defined as an in-
dividual exhibiting ‡ 50% improvement in 28 tender
joint count, ‡ 50% improvement in 28 swollen joint
count, and ‡ 50% improvement in at least three out
of five clinical variables (Health Assessment Question-
naire disability index, patient pain, patient global assess-
ment, physician global assessment, and CRP level).19

RNA isolation and quality control
Total RNA was isolated from blood collected in PAX-
gene Blood RNA Tubes using the PAXgene Blood
miRNA Kit (PreAnalytiX) according to the manufac-
turer’s instructions. RNA quality was assessed using
the Agilent Bioanalyzer, and samples were quantitated
using a NanoDrop ND-8000 spectrophotometer.

RNAseq analysis and gene
expression preprocessing
RNA was processed using the GLOBINclear (Thermo
Fisher), Ribo-Zero Magnetic Gold (Epidemiology),
and TruSeq Stranded Total RNA (Illumina) kits
according to the manufacturer’s instructions. Libraries
were processed on a NextSeq 550 DX or a NovaSeq
6000 sequencer for 75 cycles. An average of 42.4 mil-
lion reads were captured per patient, with a range of
33.7–58.6 million. Fifty-nucleotide reads were mapped
to the GRCh37 human genome with STAR alignment
software.38,39 Per gene abundance in fragments per
kilobase of transcript per million mapped reads was
calculated with the RSEM software package.40 Samples
with an RNA integrity score of > 4, and > 7 million
protein-coding reads were analyzed. Samples were pro-
cessed in seven sequencing batches over a 1-year pe-
riod. No detectable batch effect was observed between

the NextSeq and NovaSeq processed libraries based
on a principal component analysis.41 Hierarchical clus-
ter analysis of RNA expression data for 37 genes is as
previously described.42

SNP analysis
Samples were aligned to the GRCh38 human genome
with STAR alignment software.38 SNPs were called
using a modified version of the Genome Analysis Tool-
Kit Best Practices workflow for SNP and indel calling
on RNAseq data.43–45 Thirty-nine RA-associated
SNPs were evaluated (Supplementary Table S2).46

Selection of gene expression biomarkers
of nonresponse
Gene expression biomarkers of nonresponse to anti-
TNF therapy were selected from the 58-patient discov-
ery cohort. Throughout 100 repeats, 80% of samples
were randomly selected. Mann–Whitney U test was
used to eliminate any gene expression features not sig-
nificantly different in expression between responders
and nonresponders ( p > 0.05). Random Forest from
Scikit-learn34,47,48 was then used to rank the remaining
features based on mean decrease impurity, a metric of
feature importance. Features that ranked in the top 100
in at least 30 out of the 100 repeats were selected and
considered for further evaluation in the RNAseq train-
ing cohort. The anti-TNF therapy response signal was
observed in the female subpopulation, but was cross-
validated in the entire training data set that included
males and females. The all-patient cross-validation per-
formance of the classifier based on the feature set se-
lected from the female data was consistently higher.

Model building, validation, and statistical analyses
For model training, 143-patient samples were evalu-
ated. Before final model building, a second round of
feature selection took place to further evaluate the bio-
marker panel among the RNAseq training cohort.
A total of 70 features were evaluated, consisting of
gene expression biomarkers selected from the discov-
ery cohort, SNPs, and clinical features (Supplementary
Tables S1–S3). Each of the 70 features was ranked by
assessing the decrease in cross-validated model perfor-
mance (96 repeats of 20% withheld cross-validation)
when a given feature was removed. Features that caused
the largest drops in cross-validated model performance
upon removal were considered to be the most impor-
tant. The top 25 ranked features were used to build a fi-
nalized Random Forest model, which was subsequently

Mellors, et al.; Network and Systems Medicine 2020, 3.1
http://online.liebertpub.com/doi/10.1089/nsm.2020.0007

93



applied to the withheld 175-patient validation set sam-
ples. Model performance was evaluated using area
under the receiver operating curve,49 positive predictive
value, and specificity.50 All statistical analyses were per-
formed using Python 3.7.6. Odds ratios and confidence
intervals (CI) were calculated as previously de-
scribed.51,52 Chi-squared test was used to determine
the significance of differences in model performance
stratified by ethnicity.

Building the human interactome and RA disease
module, and performing network medicine
analyses of molecular features
The human interactome was assembled as previously
described30 from 21 public databases (Supplementary
Table S4) containing different types of experimentally
derived protein/protein interaction (PPI) data: (1)
binary PPIs, derived from high-throughput yeast-two
hybrid experiments (HI-Union),53 three-dimensional
protein structures (Interactome3D,54 Instruct,55

Insider56), or literature curation (PINA,57 MINT,58

LitBM17,53 Interactome3D, Instruct, Insider, Bio-
Grid,59 HINT,60 HIPPIE,61 APID,62 InWeb63); (2)
PPIs identified by affinity purification followed by
mass spectrometry present in BioPlex2,64 QUBIC,65

CoFrac,66 HINT, HIPPIE, APID, LitBM17, and
InWeb; (3) kinase/substrate interactions from Kino-
meNetworkX67 and PhosphoSitePlus68; (4) signaling
interactions from SignaLink69 and InnateDB70; and
(5) regulatory interactions derived by the ENCODE
consortium. We used the curated list of PSI-MI IDs
provided by Alonso-López et al.62 for differentiating
binary interactions among the several experimental
methods present in the literature-curation databases.
All proteins were mapped in their corresponding
NCBI Entrez ID and the proteins that could not be
mapped were removed. The resulting human interac-
tome includes 18,505 proteins and 327,924 interactions.

The DIAMOnD approach31 was used to generate an
RA disease module. Proteins used to seed the disease
module were linked to RA by at least two of five data-
bases: GWAS Catalog,71 HuGE Navigator Phenopedia,72

ClinVar,73 OMIM,74 and MalaCards.75 DIAMOnD
identified proteins that were significantly enriched in
the same Gene Ontology biological process terms as
the disease-associated proteins.

Proximity of the molecular features to each other on
the human interactome map was calculated as previ-
ously described.76 Briefly, the closest distance was de-
fined as the minimum path length between each

protein and the other proteins in the set. Significance
of the observed closest distance, reported as a z-score,
was evaluated in comparison with the expected closest
distance determined from 10,000 random protein sets
of the same size. Randomizations were performed as
previously described.76

Pathway enrichment analysis
KEGG, BioCarta, Reactome, and Signal Transduction
pathway annotations were obtained from the Molecu-
lar Signatures Database (MSigDB), Version 6.2.77

Fisher’s exact test was used to identify biological path-
ways. Pathways with a Bonferroni corrected p-value of
< 0.05 were considered enriched. IL10,78 POMC,79

JAK1,80 ICOSLG,81 TNF, TNFSF11,82 NR3C1,83

P2RY1284 (NCT02874092), PTGER4,85 GGPS1,86

FDPS,86 TNFRSF13B (NCT03016013), IL6,87 ESR1,88

ESR2,88 ITK89 (NCT02919475), BTK,90 TLR491

(NCT03241108), IRAK4,92 JAK2,80 JAK3,80 HDAC1
(NCT02965599), PSMB5,93,94 ADORA3,95 ITGA996

(NCT02698657, NCT03257852), IFNB197 (NCT02727764;
NCT03445715), and CX3CL198 were the approved
drug targets in RA.

Results
Building the human interactome
and a map of RA disease biology
To begin developing the network medicine tools neces-
sary to evaluate human disease biology, we created a
map of cellular components and their physical interac-
tions. By amalgamating publicly available data (Supple-
mentary Table S4) of 327,924 pairwise PPIs between a
total of 18,505 proteins, a comprehensive map of biol-
ogy called the human interactome was created (see the
Materials and Methods section).30 There are *20,000
proteins encoded by the human genome, and therefore,
this human interactome incorporates interaction data
from more than 90% of human proteins.

Disease-associated proteins tend to interact with
each other in a subnetwork on the human interactome
called a disease module.30 Using the DIAMOnD ap-
proach31 that aggregates potential disease-associated
proteins based on their network proximity to known
disease-associated proteins, an RA disease module
was generated that contains *200 proteins. Of these,
66% were linked to RA in genome-wide association
study databases and DIAMOnD identified the remain-
ing proteins that are significantly enriched in the same
Gene Ontology biological process terms as the known
disease-associated proteins.
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Using information from the human interactome and
the RA disease module, we sought to identify a blood-
based molecular signature that integrates clinical variables
and molecular features to predict which RA patients will
not respond to anti-TNF therapies (Fig. 1). Briefly, mo-
lecular features that discriminate between responders
and nonresponders to anti-TNF therapies were selected
from a publicly available microarray data set. In a cross-
platform analysis, these features were combined with RA
disease module-associated SNPs and clinical factors.
Then, a machine-learning algorithm was trained using
these features and RNAseq data. Finally, performance
of the predictive drug response algorithm was validated
in an independent validation trial.

Cross-platform identification of discriminatory
gene expression features in whole blood
predictive of inadequate response to anti-TNF
therapy in RA patients
To maximize the clinical utility of a test that predicts
nonresponse to therapy, a routine noninvasive or min-

imally invasive sample source that does not require
specialized specimen collection procedures is ideal.
For this reason, we analyzed gene expression data de-
rived from whole blood.99,100 Gene expression that is
discriminatory between patients considered responders
and nonresponders to anti-TNF therapies was selected
from a publicly available microarray discovery cohort
data set of 58 biologic-naive RA patients using the
Random Forest machine-learning algorithm (see the
Materials and Methods section).34,47 Of the 21,818
genes in the discovery data set for which gene expres-
sion was assessed, 37 were selected as discriminatory
biomarkers (Supplementary Table S1). Hierarchical
cluster analysis illustrates that the gene expression pro-
files of these 37 biomarker transcripts can distinguish
responders (n = 17) and nonresponders (n = 41) to
anti-TNF therapies (Fig. 2). Two main clusters were
observed, one predominantly nonresponders and the
other responders, thereby substantiating the discrimi-
natory nature of this multivariate molecular signature
for response prediction. Transcriptional profiling by

FIG. 1. Flowchart describing development of anti-TNF drug response algorithm in RA. Gene expression that
discriminates between responders and nonresponders to anti-TNF therapies was selected from a publicly
available microarray data set. In a cross-platform analysis, these features were combined with network disease
module-associated SNPs and clinical factors, and then used to train a machine-learning algorithm using
RNAseq data. Finally, performance of the predictive drug response algorithm was validated in an independent
validation trial. CI, confidence interval; CV, cross-validation; PPV, positive predictive value; RA, rheumatoid
arthritis; SNPs, single-nucleotide polymorphisms; TNF, tumor necrosis factor.
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microarray and RNAseq varies in dynamic range and
exhibits some discordance in the number and extent
of differential gene expression observed.101–107 None-
theless, the majority of the transcripts (19/37; 51.4%)
identified as discriminatory of anti-TNF drug response
in microarray data also differentiated between re-
sponders and nonresponders in RNAseq data (Supple-
mentary Fig. S1).

Evaluation of disease-associated SNPs
from RNAseq data
RNAseq provides information on nucleotide sequence
that is lacking from microarray analyses. In addition
to gene expression, variations in RNA sequence may
be predictive of nonresponse to anti-TNF therapy in
RA patients. To this end, a training data set was gener-
ated from clinical data and whole-blood RNAseq data
obtained from 143 RA patients in the CORRONA
CERTAIN study.36 Characteristics and demographics
of the patient populations are summarized in Table 1.
Although SNP analysis is traditionally performed on
whole-genome sequencing data, the majority of the ge-

nome is transcribed.108,109 Thus, most SNP variants
can be detected in ribosomal RNA-depleted RNAseq
data.110 Because these RNAseq data were derived
from blood samples, only SNPs that are associated
with RA, which have been functionally linked to gene
expression changes in peripheral blood mononuclear
cells through expression quantitative trait loci (eQTL)
analysis, were examined (Supplementary Table S2).46

The genetic loci associated with the selected SNPs
have a significant overlap with the RA disease module
(Fig. 3B). Twenty-two such disease module-associated
SNPs were above the limit of detection in the patient
RNAseq data and thus included in further analyses
(Supplementary Fig. S2).

Integration of SNPs, gene expression data,
and clinical variables to develop a multifactorial
predictive drug response algorithm
Gene expression indicative of drug response (Supple-
mentary Table S1), RA-associated SNPs (Supplemen-
tary Table S2), and clinical factors (Supplementary
Table S3) represent a set of 70 biomarker features

FIG. 2. Discriminatory genes indicative of nonresponse to anti-TNF therapy in RA patient blood samples.
Hierarchical cluster analysis42 of RNA expression data for 37 genes illustrates two main groupings, one
predominantly nonresponders and the other responders, thereby substantiating the discriminatory nature of
these genes for anti-TNF response prediction. The heatmap represents the relative RNA expression level in
arbitrary units.
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that were used to train and develop a drug response al-
gorithm that is predictive of nonresponse to anti-TNF
therapies. Using ACR50 at 6 months as a benchmark,
the training cohort population had a response rate to
anti-TNF therapies of 30.8% (44/143). This is repre-
sentative of the general population111 and reflects the
real-world prospective collection approach of the
CORRONA CERTAIN study.36 Random Forest was
used to generate predictive models with 80% of the
RNAseq training data set using features from the dis-
criminatory gene expression set, SNPs, and clinical fac-
tors. The remaining 20% of the data set was withheld
for performance testing during the model building pro-
cess. Although 70 candidate biomarkers were consid-
ered in this analysis, not all were required to predict
the anti-TNF therapy response. The biomarker panel
used to develop the final model predictive of inade-
quate response to anti-TNF therapies included 10
SNPs, 8 transcripts, 2 laboratory tests (CRP and anti-

CCP), and 3 clinical metrics (sex, body mass index
[BMI], patient disease assessment).

Independent validation trial of a drug response
biomarker panel predictive of nonresponse
to anti-TNF therapy in RA patients
To confirm that the drug response biomarker panel is
generalizable, an independent group of prospectively
collected samples (n = 175) were used to conduct a val-
idation trial. The samples included in the validation co-
hort were not used for any stage of the biomarker panel
development, and the algorithm has no information
derived from the gene expression data or clinical out-
comes from these patients.

Independent validation of the drug response bio-
marker panel stratified the validation cohort into pre-
dicted nonresponders and responders, with a highly
statistically significant odds ratio of 6.57 (95% CI
2.75–15.70) of being a nonresponder in the respective
subgroup. The odds ratio is a statistic that quantifies
the strength of association between two events, in this
case the signal from the biomarker panel and inadequate
response to anti-TNF therapies. This means that a pa-
tient identified by the drug response biomarker panel
to be a nonresponder is 6.57 times more likely to inad-
equately respond to an anti-TNF therapy than if that pa-
tient was a responder. The drug response biomarker
panel identified patients who are unlikely to have an
adequate response to anti-TNF therapies with a positive
predictive value (PPV) of 89.7% (95% CI 79.0–95.7%),
specificity of 86.8% (95% CI 72.4–94.1%), and sensitivity
of 50.0% (95% CI 40.8–58.7%) (Table 2). Patients pre-
dicted to be nonresponders have an observed ACR50
response rate of 10.3% (7/68) with anti-TNF therapies,
significantly lower than the overall response rate of
30.3% (53/175). Conversely, the predicted responders
had an observed ACR50 response rate of 43.0% (46/
107), which is a 41.9% improvement from that of the
unstratified patient population.

Alternatively, using the more stringent threshold of
response, ACR70, which requires patients to exhibit a
70% improvement in the ACR response criteria, 81.7%
(143/175) of patients in the validation cohort were non-
responders. The drug response biomarker panel identi-
fied patients who are unlikely to achieve an ACR70
response to anti-TNF therapies with a PPV of 93.5%
(95% CI 84.0–97.9%) and specificity of 84.4% (95% CI
62.7–96.3%). The drug response biomarker panel pre-
dicted 50.3% of these nonresponders (72/143) in addi-
tion to misclassifying five ACR70 responders.

Table 1. Patient Demographics and Disease Characteristics
at Baseline

Characteristics

Training
cohort

(n = 143)
Validation trial
cohort (n = 175)

Age, years (mean – SD) 55.0 – 12.9 53.8 – 11.9
Female, % 72.7 73.1
Duration of disease, years (mean – SD) 4.7 – 6.7 5.0 – 7.5
Positive for anti-cyclic citrullinated

peptide, %
66.9 60.9

Positive for rheumatoid factor, % 73.9 70.9
Race

White 88.1 84.6
Black 6.3 6.3
Other 5.6 9.1

Current csDMARD use, %
Methotrexate 65.0 60.0
Hydroxychloroquine 3.5 4.0
‡ 2 csDMARDs 13.3 13.7
None 15.4 16.0

Concomitant prednisone, % 34.3 22.9
Baseline prednisone dose,

mg (mean – SD)
7.4 – 4.7 8.5 – 5.3

Anti-TNF use, %
Adalimumab 38.5 38.9
Etanercept 33.6 30.9
Infliximab 16.8 20.0
Certolizumab pegol 8.4 7.4
Golimumab 2.8 2.9

CDAI (mean – SD) 28.5 – 13.5 31.0 – 12.6
DAS28-CRP (mean – SD) 4.9 – 1.1 5.0 – 1.0
Swollen joint count (mean – SD) 7.2 – 6.0 8.1 – 5.5
Tender joint count (mean – SD) 10.8 – 7.3 12.0 – 7.3
ACR50 responders, % 30.8 30.3

CDAI, Clinical Disease Activity Index; csDMARDs, conventional syn-
thetic disease modifying antirheumatic drugs; SD, standard deviation;
TNF, tumor necrosis factor.
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The drug response biomarker panel includes SNPs,
and SNP allele frequencies can vary between ethnic
groups.112,113 Although the training and validation set
patient populations were predominantly Caucasian
(88.1% and 84.6%, respectively), no significant differ-
ences ( p > 0.23) were observed in the ability of the
biomarker panel to predict an inadequate response to
anti-TNF therapies among patients of other ethnicities.
Future work using population-specific studies will ad-
dress transethnic prediction performance.

Biological interpretation of gene products
that discriminate between responders
and nonresponders to anti-TNF therapy
To characterize the applicability of the predictive drug
response biomarker panel to RA disease biology, the
protein products of the discriminatory genes and
SNP eQTLs46 were analyzed using the human interac-
tome and pathway enrichment analyses. The proteins
encoded by the discriminatory genes and SNP eQTLs
included in the drug response biomarker panel were
mapped onto the human interactome map (Fig. 3A
and Supplementary Fig. S3). In total, 42 proteins map-
ped onto the human interactome: 24 are contributed by
the discriminatory genes and 18 by the SNP eQTLs.
These molecular features are significantly connected
in the same network vicinity of the human interactome
highlighting a small, yet cohesive biological network
that unifies the molecular features that predict inade-
quate response to anti-TNF therapies. Quantification
of this proximity (see the Materials and Methods sec-
tion) indicates that these different molecular features
are significantly close to each other in comparison with
random expectation (z-score =�3.83). Furthermore,
the RA disease module (z-score =�4.92) and RA drug
targets such as JAK and TNF-a (z-score =�3.97) are
proximal to the SNP eQTLs and discriminatory genes
collectively (Fig. 3B).

Pathway enrichment analysis was performed to gain
insight into the molecular pathways involved in the
anti-TNF therapy response. T cell signaling was identi-

fied as the most enriched pathway in the pathway anal-
ysis databases queried. The relevance and importance of
T cell signaling to both anti-TNF therapy response and
the disease biology of RA are well established.114–117

Discussion
By incorporating microarray gene expression data,
RNAseq, biological network analyses, and machine
learning to large patient cohorts, this study describes
the development of a drug response biomarker panel
that uses whole-blood gene expression data to identify
a molecular signature that predicts nonresponse to
anti-TNF therapies in biologic-naive patients with
RA. Validation with a prospectively collected RNAseq
data set demonstrated that the drug response bio-
marker panel could predict nonresponse to anti-TNF
therapies in an independent cohort of biologic-naive
RA patients. Anti-TNF therapies failed to help nearly
70% of the unstratified patient population reach an
ACR50 response. The drug response biomarker panel
could have prevented half of these individuals from
taking a drug that did not ameliorate the signs and
symptoms of their disease. The biomarker panel in-
cluded 10 SNPs, 8 transcripts, 2 laboratory tests (CRP
and anti-CCP), and 3 clinical metrics (sex, BMI, patient
disease assessment).

A single, large-scale, high-throughput analysis ap-
proach is yet to capture the molecular signature of RA
disease biology. Many studies have hypothesized that
the biology of nonresponse to anti-TNF therapies is
reflected in the transcriptome of whole blood.34,118–123

However, none has been translated into the clinic,
which is likely a reflection of both the complexity of
RA disease biology and the varying methodologies
used for algorithm development. Furthermore, limited
sample sizes and the complexity of gene expression
data analyses may have thus far prevented the develop-
ment of an algorithm that is generalizable across patient
cohorts and to the wider patient population. The drug
response biomarker panel described in this work differs
from previous attempts to predict response to anti-TNF
therapies in that it integrated RNA transcript levels and
RNA sequence information. SNPs can affect many as-
pects of cellular biology, including the propensity for
regulatory elements to interact with their cognate pro-
tein partners, the ratio or identity of alternative splice
variants produced from a gene locus, transcript levels,
and protein sequence.124–126 Therefore, the functional
readout of disease-associated SNPs contributes to the
propensity of an individual to develop disease as well

Table 2. Predictive Drug Response Biomarker Panel
Validation Performance

ACR50 (R) ACR50 (NR) Sum

Drug response biomarker panel (R) 46 61 107
Drug response biomarker panel (NR) 7 61 68
Sum 53 122

NR, non-responder; R, responder.
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as the inclination for environmental factors to influence
pathobiology.127,128 Many regulatory elements and ge-
nomic regions that do not encode protein are tran-
scribed, such as in the form of enhancer RNAs129 and
promoter-associated transcripts.130 Thus, many SNPs
that influence spatial- and temporal-specific changes
in transcription can be evaluated from RNAseq data.
Analyzed together into a single-molecular signature,
SNP and gene expression analyses can capture pheno-
typic variation and pathway associations that may oth-
erwise be missed.

The microarray and RNAseq gene expression analy-
sis platforms differ in RNA detection methodologies
and statistical tools to determine normalized gene
expression values.131,132 Despite these differences in
technology, the cross-platform and cross-cohort uni-
versality of the molecular features identified in this
study highlights the presence of a robust molecular sig-
nature underlying the biology of anti-TNF drug re-
sponse. Examination of the molecular pathways that
identify patients who will not respond to anti-TNF
therapies demonstrated a connection between T cell
signaling and RA disease biology.133–138 Synovial in-
flammation results from leukocyte infiltration into
and retention in the synovial compartment, as well as
from insufficient apoptosis of chronic inflammatory
cells.139,140 This synovial infiltrate includes natural
killer cells, CD4 + , and CD8 + T cells.141–145 Further-
more, large numbers of activated T regulatory cells
can be detected in the joints of RA patients.146 The
remaining discriminatory genes that are not associated
with T cell signaling likely represent different aspects of
RA disease that differ between those patients who will
or will not respond to anti-TNF therapies. The connec-
tion to RA disease biology speaks to the reliability and
applicability of the drug response biomarker panel to
be a powerful clinical tool for identification of anti-
TNF nonresponders.

For patients predicted to inadequately respond to
anti-TNF therapies, many alternative biologic and tar-
geted synthetic therapies are available. Because pre-
dicted nonresponders had a 10% observed response
rate to anti-TNF therapies, they may see a greater ben-
efit from being prescribed an alternative treatment with
a higher reported response rate. Clinical trials assessing
the efficacy these alternative therapies report ACR50
response rates of 30–40% at 6 months following alter-
native treatment initiation for patients who had inade-
quately responded to an anti-TNF therapy.147–150 The
remaining patients—those lacking a molecular signa-

ture of nonresponse—would still have been prescribed
an anti-TNF therapy and would have a response rate of
43% (Table 2). Inadequate responders to anti-TNF
therapies who are not identified by the test likely
would be directed to anti-TNF therapies, which is over-
whelmingly the default first-line biologic for biologic-
naive RA patients, and thus, their treatment path
would be unaffected by the results of this molecular sig-
nature test.

Conclusion
Customization of treatment regimens to match the
individualized disease biology of each patient is a
goal of modern medicine. This personalized approach
to medicine is used in oncology, where particular
therapies are prescribed to patients with specific geno-
mic markers.151,152 Development and validation of a
drug response algorithm that predicts nonresponse
to a targeted therapy using this machine-learning
and network medicine approach show great promise
for advancing precision medicine in the treatment of
RA and other complex autoimmune diseases where
costly therapeutic interventions are met with inade-
quate patient response.
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ACR¼American College of Rheumatology

anti-CCP¼ anti-cyclic citrullinated protein
BMI¼ body mass index

CDAI¼Clinical Disease Activity Index
CI¼ confidence interval

CORRONA¼Consortium of Rheumatology Researchers
of North America

CRP¼C-reactive protein
csDMARDs¼ conventional synthetic disease modifying

antirheumatic drugs
CV¼ cross-validation
DG¼ discriminatory genes

eQTL¼ expression quantitative trait loci
HI¼ human interactome

OR¼ odds ratio
PPI¼ protein/protein interactions

PPV¼ positive predictive value
RA¼ rheumatoid arthritis

RNAseq¼ RNA sequencing
SNPs¼ single-nucleotide polymorphisms

TNF¼ tumor necrosis factor
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